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Abstract
The notion of phase plays an essential role in both semiclassical and quantum
mechanics. But what is exactly a phase, and how does it change with time? It
turns out that the most universal definition of a phase can be given in terms of
Lagrangian manifolds by exploiting the properties of the Poincaré–Cartan form.
Such a phase is defined, not in configuration space, but rather in phase-space
and is thus insensitive to the appearance of caustics. Surprisingly enough,
this approach allows us to recover the Heisenberg–Weyl formalism without
invoking commutation relations for observables.

PACS numbers: 03.65.Vf, 02.40.Ma, 02.40.Yy, 42.15.Dp, 45.20.Jj

1. Introduction

The notion of phase plays a pivotal role in modern physics, both classical and quantum. The
discovery of unexpected and surprising phenomena, such as the Aharonov–Bohm effect, the
‘Berry phase’ and the ‘Hannay angles’, have triggered an unprecedented interest in the notion
as witnessed by the abundant literature on these geometric and topological phase effects. For
instance, the work of Berry [4], Hannay, [11], Montgomery [19], Koiller [13] are a few (but
not the only!) milestones.

But what is exactly a phase? A common conception is that it is something like an angle,
but this does of course not tell us very much concretely. Let us look up the word ‘phase’ in the
Webster1. We find there that “ . . . [a phase is] the stage of progress in a regularly recurring
motion or a cyclic progress (as a wave or vibration) in relation to a reference point”. The last
few words really go straight to the point: the vocation of a phase is to describe a variation—it
has no absolute meaning by itself. So what would then a good definition of the variation of
‘phase’ be for a mechanical system? Consider a Hamiltonian system (in n degrees of freedom)
with Hamiltonian H = H(x, p, t); where x = (x1, . . . , xn), p = (p1, . . . , pn). We will

1 Webster New Encyclopedia, 1994 edition.
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define the variation of the phase of that system when it evolves from a state z′ = (x ′, p′) at
time t ′ to a state z = (x, p) at time t by the formula

�� =
∫ z,t

z′,t ′
p dx − H dt (1)

where the integration is performed along the arc joining (z′, t ′) to (z, t) in time-dependent
phase-space, and determined by the Hamilton equations for H.

So far, so good. But again: what is then ‘the’ phase of that system? A clue is given by
Hamilton–Jacobi’s equation with initial datum

∂�

∂t
+ H(x,∇x�) = 0 �(x, t ′) = �′(x). (2)

Assume that H is of the classical type ‘kinetic energy + smooth potential’; then the solution
of the problem (2) always exists (and is unique) if |t − t ′| is sufficiently small. This solution
� = �(x, t) is obtained as follows. Let us denote by

(
f H

t,t ′
)

the time-dependent flow
determined by H and consider the graph V

′ of the function p′ = ∇x�
′(x ′). For small

values of |t − t ′|, the image V = f H
t,t ′(V

′) will still project diffeomorphically on configuration
space and hence still be a graph; given the coordinate x let p be the unique momentum vector
such that z = (x, p) ∈ V and define z′ = (x ′, p′) ∈ V

′ by z = f H
t,t ′(z

′); then the difference
�(x, t) − �′(x ′) is the quantity

��(x, x ′) =
∫ z,t

z′,t ′
p dx − H dt

and we can take the formula

�(x, t) = �′(x ′) +
∫ z,t

z′,t ′
p dx − H dt (3)

as a definition of the phase of the Hamiltonian system. Such a choice is quite correct, and
very much in the spirit of Hamilton–Jacobi theory. It is however too restrictive, because the
definition of �(x, t) heavily relies on the fact that we were able to define a point x ′ on the
initial graph V

′ via the formula (x, p) = f H
t,t ′(x

′, p′). This is only possible if V = f H
t,t ′(V

′)
is itself a graph, and this is in general no longer the case when |t − t ′| becomes too large:
for a given x there will perhaps be several points (x, p1), (x, p2), . . . , of V having the same
position coordinate due to the ‘bending’ of V

′ by the flow as time elapses, and formula (3) will
no longer make sense (to use an older terminology, the phase becomes ‘multi-valued’). This
is the usual problem to which one is confronted to in the Hamilton–Jacobi theory, and is also,
by the way, one of the reasons for which the WKB method breaks down for large times: the
semiclassical solutions to Schrödinger’s equation one wants to define on the set V = f H

t,t ′(V
′)

blow up because of the appearance of ‘caustics’ related to that bending. In semiclassical
mechanics, the remedy to this situation is well known: one renounces to the usual solutions of
Hamilton–Jacobi’s equation (2) and one considers the manifolds V themselves—whether they
are graphs, or not—as generalized solutions: this is the phase-space approach to semiclassical
mechanics inaugurated by Keller, and further developed by Maslov [17], Maslov and Fedoriuk
[18], Leray [14] and many others. Now, these manifolds are not arbitrary; they are Lagrangian
submanifolds of phase-space, which can be thought as generalizations of the usual invariant
tori of Liouville integrable systems of Hamiltonian mechanics. These Lagrangian manifolds
have the characteristic property that the skew product of two tangent vectors to V at a same
point is always zero; in the language of differential geometry this can be restated by saying
that the symplectic form vanishes identically on V. This last property implies that the action
form p dx is locally exact on V and this is the key to our definition of a phase: a phase on a
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Lagrangian submanifold V is a function ϕ whose differential is precisely p dx. (We will see
that ϕ is actually not in general defined on V itself, but rather on its universal covering.)

It turns out that an essential tool for the study of the time evolution of the phase of
a Lagrangian manifold under the action of Hamiltonian flows is the Poincaré–Cartan form
p dx − H dt . Its importance comes from the fact that it is a (relative) integral invariant.
Strangely enough, this property is often mentioned in both the mathematical and physical
literature, but seldom fully exploited. Admittedly, the approach ‘Lagrangian manifolds +
Poincaré–Cartan invariant’ is certainly not new; for instance Weinstein [22] has used it to
study the global properties of the paths of a Lagrangian manifold subject to an ‘isodrastic’
(that is, action-preserving) deformation; due to the heavy use of intrinsic differential geometry,
Weinstein’s paper is however not easily accessible to a physical audience. On the other hand,
many of the results contained in section 2 can be found in an elusive or fragmentary form
elsewhere (e.g., [6, 14]). In section 7, we show how the properties of the phase allow us to
recover the Heisenberg–Weyl operator formalism familiar from semiclassical mechanics.

This paper is relatively self-contained: the proofs are complete (even if concise), and
we have found it useful to shortly review the necessary topics from symplectic geometry
and Hamiltonian mechanics (the invariance property of the Poincaré–Cartan form is one
example); we refer the reader to the classical treatises [3, 20, 2, 15] (cited in increasing order
of mathematical sophistication) for the notions of differential geometry that we will use.

Notation. The phase-space R
2n
z = R

n
x ×R

n
p is equipped with the standard symplectic form σ :

σ(z, z′) = p · x ′ − p′ · x =
n∑

j=1

pjx
′
j − p′

j xj

if z = (x, p), z′ = (x ′, p′); in differential notation,

σ = dp ∧ dx =
n∑

j=1

dpj ∧ dxj .

A Lagrangian plane is an n-dimensional linear subspace � of R
2n
z such that the symplectic

form σ vanishes on every pair of vectors of �:

z, z′ ∈ � �⇒ σ(z, z′) = 0.

Equivalent definitions are: (i) a Lagrangian plane is the image of configuration space R
n
x (or

momentum space R
n
p) by a linear symplectic transformation (i.e. a symplectic matrix); (ii) an

n-plane with equation Ax + Bp = 0 is Lagrangian if and only if ATB = BAT.
In what follows the letter V will denote a connected (but not necessarily compact)

Lagrangian submanifold of the phase-space R
2n
z , that is:

• V has dimension n as a manifold,
• the tangent space �(z) = TzV at every point z of V is a Lagrangian plane.

2. Lagrangian manifolds in mechanics

A basic (but not generic) example of a Lagrangian manifold is the following: let � = �(x)

be a smooth function defined on some open domain in configuration space. Then,

V : p = ∇x�(x)

is a Lagrangian manifold (sometimes called an ‘exact Lagrangian manifold’). The image of
a Lagrangian manifold V by a symplectic diffeomorphism f is again a Lagrangian manifold:
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f (V) is a manifold, and the tangent mapping df (z0) is an isomorphism of �(z0) = Tz0V on
�(f (z0)) = Tf (z0)f (V); this isomorphism is symplectic, hence �(f (z0) is a Lagrangian plane.
Observe that a Lagrangian plane is a Lagrangian manifold in its own right, and so is the image
by a Lagrangian plane by a symplectic diffeomorphism.

Let us begin by making the following pedestrian—but important—remark. Suppose that
we have a system of N point-like particles at some time, say t = 0, and that we know all the
positions and momenta of these particles; this system is thus identified with a point z = (x, p)

in phase-space. We can always find a Lagrangian manifold (in fact, infinitely many) carrying
this point z. The easiest example is obtained by choosing numbers a1, . . . , an and b1, . . . , bn

such that pj = ajxj + bj ; denoting by A the diagonal matrix with diagonal entries aj and b
the vector (b1, . . . , bn), the affine space V : p = Ax + b is a Lagrangian manifold parallel to
the Lagrangian manifold � : p = Ax.

We can even do better: assume that the system of N particles is Hamiltonian with
Hamiltonian H, and let E be the energy of the system. Consider a solution � = �(x) of the
reduced Hamilton–Jacobi equation

H(x,∇x�) = E.

The manifold V : p = ∇x�(x) is Lagrangian and the energy of H is constant on it; it
thus lies on the energy shell �E : H(z) = E. We thus see that independently of any
integrability condition one can associate an exact Lagrangian manifold with every Hamiltonian
system; that Lagrangian manifold can be interpreted as a set carrying a ‘cloud’ of particles,
in fact a statistical ensemble where the positions and momenta are correlated by the formula
p = ∇x�(x). More generally, there is no need to assume that there is such a correlation, and
one can as well consider a Lagrangian manifold as a set representing a physical state. When
one measures this manifold by a density (or rather a de Rham form, see [8, 9]) and thereafter
imposes to it the Maslov (or EBK) quantum conditions, one obtains semiclassical mechanics.

As we said, Lagrangian manifolds are generalizations of the invariant tori of integrable
Hamiltonian systems, but there use is certainly not limited to this venerable topic: Lagrangian
manifolds have a life of their own, and intervene in various fields. Even if one does not have
to take Weinstein’s [21] creed ‘everything is a Lagrangian manifold!’ quite at face value, it
is however true that Lagrangian manifolds can be associated in a very natural way both with
classical and quantum systems. (We will discuss this in some detail in section 2; in any case
the solution of Cauchy’s problem for Hamilton–Jacobi’s equation anyway involves de facto a
Lagrangian manifold, whether the system is Liouville integrable or not.) The situation is even
more clear-cut in quantum mechanics: to every quantum system whose evolution is governed
by Schrödinger’s equation

ih̄
∂�

∂t
= Ĥ�

one can associate a canonical Lagrangian manifold: writing the wavefunction in polar form
� = exp(i�/h̄), the graph p = ∇x�(x, t) of the phase at time t is a Lagrangian manifold. (We
have used this fact in [7] to show how this can be used to understand Schrödinger’s equation in
the framework of the Hamilton–Jacobi formalism.) It should be noted that Lagrangian (sub)
manifolds actually play a ubiquitous role in physics. For instance, the role of ‘reciprocity
laws’ giving rise to such manifolds in thermodynamics (‘Onsager relations’), thermostatics
(‘Maxwell relations’), and in electricity and electromagnetism is well known. Tulczyjew and
Oster actually view Lagrangian manifolds as the basic entities describing physical systems (see
Abraham and Marsden [2], chapter 5, for an extensive list of references and many examples).
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3. The phase of a Lagrangian submanifold

Let us begin by giving a preliminary definition of the phase of a Lagrangian submanifold V:
it is a continuously differentiable function ϕ : V −→ R whose differential is the action form:

dϕ(z) = p dx if z = (x, p).

For example, if V is an exact Lagrangian manifold defined by the equation p = ∇x�(x), then
such a phase exists and is given by ϕ(z) = �(x):

dϕ(z) = d�(x) = ∇x�(x) dx = p dx.

We observe that this phase can be expressed as the integral

ϕ(z) = �(x0) +
∫

γ

d�(x)

calculated along any path γ in configuration space joining x0 to x.
To see what a notion of phase could be for a Lagrangian manifold which is not a graph, let

us begin with a simple example. We would like to define on the circle S1(R) : x2 + p2 = R2

in the plane R
2
z a smooth function ϕ whose differential dϕ is the action form p dx. Passing

to the polar coordinates (R, θ) (i.e. x = R cos θ and p = R sin θ ), the condition dϕ = p dx

becomes

dϕ(θ) = −R2 sin2 θ dθ

which, when integrated, leads to

ϕ(θ) = R2

2
(cos θ sin θ − θ). (4)

Now, this function is not defined on the circle itself, because ϕ(θ +2π) = ϕ(θ)−πR2 �= ϕ(θ).
We can however view ϕ(θ) as defined on the universal covering of S1(R), identified with the
real line Rθ , the projection π : Rθ −→ S1(R) being given by π(θ) = (R cos θ, R sin θ).

Consider, more generally, a completely integrable system with Hamiltonian H, and
(θ, I ) = (θ1, . . . , θn; I1, . . . , In) the corresponding angle-action variables. We have
H(x, p) = K(I) and the motion is given by

θ(t) = θ(0) + ω(I (0))t I (t) = I (0)

where the frequency vector ω(I) = (ω1(I ), . . . , ωn(I )) is the gradient of K: ω(I) = ∇IK(I).
The motion takes place on the Lagrangian manifold I (t) = I (0). Topologically, this manifold
is identified with a product of n unit circles, each lying in a plane of conjugate variables.
Recalling that θ = (θ1, . . . , θn) the phase of T is thus

ϕ(θ) = 1

2

n∑
j=1

(cos θj sin θj − θj )

in view of (4).
Consider now an arbitrary Lagrangian manifold V, and choose a ‘base point’ z̄ = (x̄, p̄)

on V; we denote by π1(V) the fundamental group π1(V, z̄). Let us denote by V̌ the set of all
homotopy classes ž of paths γ (z̄, z) starting at z̄ and ending at z, and by π : V̌ −→ V the
mapping which with ž associates the endpoint z of any of its representatives γ (z̄, z). The set
V̌ can be equipped with a topology having the following properties: (i) V̌ is simply connected;
(ii) π is a covering mapping: every z ∈ V has an open neighbourhood U such that π−1(U) is
the disjoint union of a sequence of open sets Ǔ1, Ǔ2, . . . such that the restriction of π to each
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of the Ǔj is a diffeomorphism onto U. With that topology and projection, V̌ is the universal
covering of V. Consider now the action form

p dx = p1 dx1 + · · · + pn dxn

on V; we can ‘pull back’ this form to V̌ using the projection π , thus obtaining a 1-form
π∗(p dx). Now

dπ∗(p dx) = π∗ d(p dx) = π∗(dp ∧ dx)

and dp ∧ dx = σ is identically zero on V, hence the form π∗(p dx) is closed on V̌. Since
V̌ is contractible π∗(p dx) is an exact form on V̌ in view of Poincaré’s lemma and we
can thus find infinitely many functions ϕ : V̌ −→ R, all differing by a constant, such that
dϕ(ž) = π∗(p dx). Making a slight abuse of notation by identifying p dx and its pull-back
π∗(p dx), we can summarize the discussion above as follows:

There exists a differentiable function ϕ : V̌ −→ R such that

dϕ(ž) = p dx if π(ž) = z = (x, p). (5)

We will call such a function a phase of V, although ϕ is in general defined on the universal
covering V̌. Note that we can always fix one such phase by imposing a given value at some
point of V̌; for instance, we can choose ϕ(z̄) = 0 where z̄ is identified with the (homotopy
class of) constant loop γ (z̄, z).

A straightforward example of a phase one can associate with a system of particles
represented by a phase-space point z is the following:

Example 1. Let � : p = Mx be a Lagrangian plane passing through z (that such a plane
always exists was discussed above). Choosing the origin as the base point: z̄ = 0, the phase is

φ(z) = 1
2p · x = 1

2Mx2

(where we have set Mx2 = Mx · x).

Phases on Lagrangian manifolds can be explicitly constructed by integrating the action
form along paths.

Proposition 2. Let z be any point of V and γ (z̄, z) an arbitrary continuous path in V joining
z̄ to z. The line integral

I (z) =
∫

γ (z̄,z)

p dx

only depends on the homotopy class ž of γ (z̄, z) and defines a phase of V.

Proof. Let γ ′(z̄, z) be another path joining z̄ to z in V and homotopic to γ (z̄, z); the loop
δ = γ (z̄, z)−γ ′(z̄, z) is thus homotopic to a point in V. Let h = h(s, t), 0 � s, t � 1, be such
a homotopy: h(0, t) = δ(t), h(1, t) = 0. As s varies from 0 to 1 the loop δ will sweep out a
two-dimensional surface D with boundary δ contained in V. In view of the multi-dimensional
Stokes theorem, we have∫

δ

p dx =
∫ ∫

D
dp ∧ dx = 0

where the last equality follows from the fact that D is a subset of a Lagrangian manifold. It
follows from this equality that∫

γ (z̄,z)

p dx =
∫

γ ′(z̄,z)
p dx
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hence the integral of p dx along γ (z̄, z) only depends on the homotopy class in V of the
path joining z̄ to z; it is thus a function of ž ∈ V̌. There remains to show that the function
ϕ : V̌ −→ R defined by

ϕ(ž) =
∫

γ (z̄,z)

p dx (6)

is such that dϕ(ž) = p dx. The property being local, we can assume that V is simply connected,
so that V̌ = V. Since V is diffeomorphic to �(z) = TzV in a neighbourhood of z, we can
reduce the proof to the case where V is a Lagrangian plane �. Let Ax +Bp = 0 (ATB = BAT)

be an equation of �, and

γ (z) : t 
−→ (−BTu(t), ATu(t)), 0 � t � 1

be a differentiable curve starting from 0 and ending at z = (−BTu(1), ATu(1)). We have

ϕ(z) =
∫

γ (z)

p dx

= −
∫ 1

0
ATu(t) · BTu̇(t) dt

= −
∫ 1

0
BATu(t) · u̇(t) dt

and hence, since BAT is symmetric,

ϕ(z) = − 1
2BATu(1)2

that is

dϕ(z) = −BATu(1) du(1) = p dx. �

As already observed above we are slightly abusing language by calling ϕ a ‘phase of V’
since ϕ is multi-valued on V. This multi-valuedness is made explicit by studying the action of
π1(V) on V̌. The latter is defined as follows: let γ be a loop in V with origin z0 and γ̌ ∈ π1(V)

its homotopy class. Then γ̌ ž is the homotopy class of the loop γ followed by the path γ (z)

representing ž. From the definition of the phase ϕ, it follows that

ϕ(γ̌ ž) = ϕ(ž) +
∮

γ

p dx. (7)

The phase is thus defined on V itself if and only if
∫
γ

p dx = 0 for all loops in V; this is the
case if V is contractible. However, Gromov has proved in [10] (also see [12]) that if V is
closed (i.e. compact and without boundary) then we cannot have

∮
γ

p dx = 0 for all loops γ

in V; to construct the phase of such a manifold, we thus have to use the procedure above.

4. The local expression of the phase

Recall that a Lagrangian manifold which can be represented by an equation p = ∇x�(x) is
called an ‘exact Lagrangian manifold’. It turns out that Lagrangian manifolds are (locally)
exact outside their caustic set, and this is most easily described in terms of the phase defined
above. We use the following standard terminology: a point z of a Lagrangian manifold V is
called a ‘caustic point’ if z has no neighbourhood in V for which the restriction of the mapping
z = (x, p) 
−→ x is a diffeomorphism; at a caustic point the tangent space �(z) = TxV is the
momentum space 0 × R

n
p. The set � of all caustic points of V is called the caustic of V. Of

course, caustics have no intrinsic meaning, whatsoever: there are just artefacts coming from
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the choice of a privileged n-dimensional plane (e.g., the configuration space) on which one
projects the motion.

Let U be an open subset of V which contains no caustic points: U ∩ � = ∅. Then the
restriction χU to U of the projection χ : (x, p) 
−→ x is a diffeomorphism of U onto its image
χU(U), and (U, χU) is thus a local chart of V. Choosing U small enough, we can assume that
the fibre π−1(U) is the disjoint union of a family of open sets Ǔ in the universal covering of V

and such that the restriction πU to Ǔ of the projection π : V̌ −→ V is a diffeomorphism onto
U. It follows that (Ǔ, χU ◦ πU) is a local chart of V̌.

Proposition 3. Let � be the local expression of the phase ϕ in any of the local charts
(Ǔ, χU ◦ πU):

�(x) = ϕ((χU ◦ πU)−1(x)). (8)

The Lagrangian submanifold U is exact and can be represented by the equation

p = ∇x�(x) = ∇xϕ((χU ◦ πU)−1(x)). (9)

Proof. Let us first show that equation (9) remains unchanged if we replace (Ǔ, χU ◦ πU) by
a chart (Ǔ′, χU

′ ◦ πU
′) such that π(Ǔ′) = π(Ǔ). There exists γ ∈ π1(V) such that Ǔ

′ = γ Ǔ,
hence, by (7), the restrictions ϕ

Ǔ′ and ϕ
Ǔ

differ by the constant

C(γ ) =
∮

γ

p dx.

It follows that

∇xϕ((χU
′ ◦ πU

′)−1(x)) = ∇xϕ((χU ◦ πU)−1(x))

and hence the right-hand side of the identity (9) does not depend on the choice of local chart
(Ǔ, χU ◦ πU). Set now (χU ◦ πU)−1(x) = (p(x), x); we have, for x ∈ χU ◦ πU(U),

d�(x) = dϕ(p(x), x) = p(x) dx

hence (9). �

5. Symplectic frames and Lagrangian phases

The observant reader will have noticed that the phase of a Lagrangian manifold was defined in
terms of one special coordinate system, namely the canonical coordinates x, p. It is of course
of interest to determine what happens to the phase under symplectic changes of variables.
Let us introduce, following Leray [14], the notion of symplectic frame: by definition, a
symplectic frame is any pair (�, �∗) of Lagrangian planes such that R

2n
z = �⊕ �∗; equivalently:

�∩ �∗ = 0. Set �x = R
n
x × 0 and �p = 0 × R

n
p (the configuration space and the momentum

space, respectively). The pair (�x, �p) is a symplectic frame: we call it the canonical frame.
The symplectic group acts transitively on all pairs of transverse Lagrangian planes (see [6, 8]);
it follows that the image S(�, �∗) = (S�, S�∗) of a symplectic frame is a symplectic frame,
and that for every pair (�, �∗), (�′, �′∗) of symplectic frame there exists R ∈ Sp(n) such that
(�, �∗) = R(�′, �′∗) (i.e. � = R�′ and �∗ = R�′∗). We will call such an R a symplectic change
of frame; a manifold which is Lagrangian in one such frame is Lagrangian in all symplectic
frames and we will see that there is an intrinsic (i.e. frame-independent) function on V̌ which
we call, again following Leray, the Lagrangian phase of V.

For the sake of notational brevity we will omit the dot · for scalar products and write, for
instance, px in place of p · x.
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Let Sp(n) be the symplectic group: S ∈ Sp(n) if and only if S is a linear automorphism
of R

2n
z preserving the symplectic form σ : σ(Sz, Sz′) = σ(z, z′) for all vectors z, z′. For every

S ∈ Sp(n), the image S(V) is also a Lagrangian manifold. The following result allows us to
compare the phases of V and S(V); it will also allow us to give a frame-independent definition
of the phase of V.

Proposition 4. For S ∈ Sp(n) set (xS, pS) = S(x, p). (i) We have

pS dxS − xS dpS = p dx − x dp. (10)

(ii) Define a function ϕS : V̌ −→ R by the formula

ϕS(ž) = ϕ(ž) + 1
2 (pSxS − px). (11)

This function is differentiable, and we have

dϕS(ž) = pS dxS if π(ž) = (x, p). (12)

Proof. (i) Writing S in block-matrix form

S =
(

A B

C D

)

the condition that S is symplectic implies that ATC and BTD are symmetric, and that
ATD − CTB = I . Setting xS = Ax + Bp, pS = Cx + Dp and expanding the products,
we get

pS dxS − xS dpS = (ATCx + ATDp − CTAx − CTBp) dx

+ (BTCx + BTDp − DTAx − DTBp) dp

= p dx − x dp

which proves (10). (Note that in general we do not have pS dxS = p dx.) (ii) Differentiating
the right-hand side of (11) we get, since dϕ(ž) = p dx,

dϕS(ž) = 1
2 (p dx − x dp) + 1

2 d(pSxS)

= 1
2 (pS dxS − xS dpS) + 1

2 d(pSxS)

= pS dxS

which proves (12). �

We can identify the universal covering of S(V) with that, V̌, of V: for this it suffices to
define the projection

πS = S ◦ π : V̌ −→ S(V) : πS(ž) = Sz = (xS, pS).

Proposition 4 can then be restated as follows:

The phase of S(V ) is the function ϕS : V̌ −→ R defined by formula (11): we have
dϕS(ž) = p dx if πS(ž) = (x, p).

We will call ‘Lagrangian phase of V’ the function λ : V̌ −→ R defined by

λ(ž) = ϕ(ž) − 1
2px if π(ž) = (x, p). (13)

In view of proposition 4, the invariant phase λR of the Lagrangian manifold RV is

λR(ž) = ϕR(ž) − 1
2pRxR if πR(ž) = (x, p).

Since in view of formula (11), we have

ϕR(ž) = ϕ(ž) + 1
2 (pRxR − px) (14)

it follows that λR(ž) = λ(ž): the Lagrangian phase is thus the same in all symplectic frames.
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Note that it follows from definition (13) that the differential of the Lagrangian phase is

dλ(ž) = 1
2 (p dx − x dp). (15)

Let us note the following particular case of proposition 4: assume that S is a free symplectic
matrix, that is

S =
(

A B

C D

)
det B �= 0

(equivalently, S(0 × R
n
p) ∩ (0 × R

n
p) = 0). Then S admits a homogeneous-free generating

function

W(x, x ′) = 1
2B−1Ax2 − B−1xx ′ + 1

2DB−1x ′2

(where B−1Ax2 = B−1Ax · x, etc), and we have (xS, pS) = S(x, p) if and only if
pS = ∇xW(xS, x) and p = −∇xW(xS, x). Since W is homogeneous of degree 2 in the
x, x ′ variables, Euler’s formula yields

W(xS, x) = 1
2 (xS∇xS

W(xS, x) + x∇xW(xS, x))

= 1
2 (pSxS − px)

hence formula (11) can be rewritten as

ϕS(ž) = ϕ(ž) + W(xS, x). (16)

As we will see in section 6, formula (16) is a particular case of a more general result
describing the action of Hamiltonian flows on the phase of a Lagrangian manifold.

6. Hamiltonian motions and phase

We are now going to investigate the action of Hamiltonian flows on the phase. Let us first
introduce some notation. Let H = H(z, t) (‘the Hamiltonian’) be a smooth real function
defined on R

2n
z × Rt . We denote by

(
f H

t,t ′
)

the time-dependent flow it determines: for an initial
point z′ set zt = f H

t,t ′(zt ′); the function t 
−→ zt is the solution of Hamilton’s equations

ẋ = ∇pH(z, t) ṗ = −∇xH(z, t)(z, t)

passing through z′
t ′ at time t ′. Note that f H

t,t ′ ◦ f H
t ′,t ′′ = f H

t,t ′′ . The suspended Hamiltonian flow(
f̃ H

t

)
is defined on the extended phase-space R

2n
z × Rt ; it is defined by

f̃ H
t (z′, t ′) = (

f H
t+t ′,t ′(z

′), t + t ′
)

and is the flow of the suspended Hamiltonian vector field

X̃H = (∇pH,−∇xH, 1).

We will also use the notation

f H
t = f H

t,0

and call, somewhat sloppily, the family of canonical transformations
(
f H

t

)
the flow determined

by H (it is not truly a flow when H is effectively time dependent since we have in general
f H

t f H
t ′ �= f H

t+t ′ ).
We will use the properties of the Poincaré–Cartan integral form. It is the 1-form αH on

R
2n
z × Rt defined by

αH = p dx − H dt.
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Its interest comes from the following property which expresses the fact that αH is a relative
integral invariant (see [2, 15]): the contraction of the exterior derivative

dαH = dp ∧ dx − dH ∧ dt

with the suspended Hamilton vector field X̃H is zero: iX̃H
dαH = 0. This means that for every

vector Ỹ (z, t) in R
2n
z × Rt , originating at a point (z, t), we will have

dαH (X̃H (z, t), Ỹ (z, t)) = 0. (17)

This property has the following, for us very important, consequence: let γ̃ : [0, 1] −→
R

2n
z × Rt be a smooth curve in extended phase-space on which we let the suspended flow

f̃ H
t act; as time varies, γ̃ will sweep out a two-dimensional surface �t whose boundary ∂�t

consists of γ̃ , f̃ H
t (γ̃ ) and two arcs of phase-space trajectory, γ̃0 and γ̃1: γ̃0 is the trajectory of

the origin γ̃ (0) of γ̃ , and γ̃1 that of its endpoint γ̃ (1). It turns out that we will have∫
∂�t

αH = 0. (18)

Here is a sketch of the proof: using the multi-dimensional Stokes formula we have∫
∂�t

αH =
∫

�t

d αH .

Since the surface �t consists of flow lines of X̃H each pair (X̃, Ỹ ) of tangent vectors at a
point (z, t) can be written as a linear combination of two independent vectors, and one of
these vectors can be chosen as X̃H . It follows that dαH (X̃, Ỹ ) is a sum of terms of the
type dαH (X̃H , Ỹ ), which are equal to zero in view of (17). We thus have

∫
�t

dαH = 0,
whence (18).

From now on we will use the definite integral notation∫ zt

zt ′
αH =

∫ zt

zt ′
p dx − H dt

for the integral of the Poincaré–Cartan form along the phase-space trajectory s 
−→ f H
s,t ′(zt ′)

joining zt ′ to zt = f H
t,t ′(zt ′). Let V be a Lagrangian manifold and Vt = f H

t (V). Note
that Vt = f H

t,t ′(Vt ′). Since Hamiltonian flows consist of symplectomorphisms, each Vt is a

Lagrangian manifold, and the function ϕt : V̌t −→ R defined by

ϕt (žt ) =
∫

γ (z̄t ,zt )

p dx

(žt being the homotopy class in Vt of a path γ (z̄t , zt )) obviously is a phase when z̄t = f H
t (z̄0)

is chosen as the base point in Vt . The following result relates ϕt to the phase ϕ = ϕ0

of V = V0.

Lemma 5. Let ž = ž0 be a point in V̌ = V̌ 0 and žt its image in V̌t by f H
t (i.e. žt is the

homotopy class in Vt of the image by f H
t of a path representing ž).We have

ϕt (žt ) − ϕ(ž) =
∫ zt

z0

αH −
∫ z̄t

z̄0

αH . (19)

Proof. Let �t be the closed curve

�t = [z̄0, z̄t ] + γ (z̄t , zt ) − [z0, zt ] − γ (z̄0, z0)
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where [z̄0, z̄t ] (resp. [z0, zt ]) is the Hamiltonian trajectory joining z̄0 to z̄t (resp. z0 to zt ). In
view of the consequence (18) of the relative invariance property of the Poincaré–Cartan form
αH , we have ∫

�t

αH = 0. (20)

Since dt = 0 along both γ (z̄t , zt ) and γ (z̄0, z0), we have∫
γ (z̄t ,zt )

αH =
∫

γ (z̄t ,zt )

p dx

∫
γ (z̄0,z0)

αH =
∫

γ (z̄0,z0)

p dx

and hence (20) is equivalent to∫
γ (z̄0,z0)

p dx +
∫ zt

z0

αH −
∫

γ (z̄t ,zt )

p dx −
∫ z̄t

z̄0

αH = 0

that is to (19). �

Lemma 5 has the following fundamental consequence for the phase of Vt = f H
t (V).

Proposition 6. Set z0 = z and ž = ž0. The function ϕ(· , t) : V̌ −→ R defined by

ϕ(ž, t) = ϕ(ž) +
∫ zt ,t

z,0
αH zt = f H

t (z) (21)

is a phase of Vt : for fixed t, we have

dϕ(ž, t) = pt dxt if πt(ž) = zt = (xt , pt ) (22)

that is, equivalently,

dϕ(ž, t) = pt dxt if π(ž) = z = (x, p). (23)

Proof. In view of lemma 5, the function ϕ(· , t) satisfies

ϕ(ž, t) = ϕt(žt ) +
∫ z̄t

z̄0

αH (24)

where žt ∈ V̌t is the image of ž by f H
t . It follows that for fixed t, we have

dϕ(ž, t) = ptdxt if πt(žt ) = (xt , pt )

where πt : V̌t −→ Vt is the projection žt 
−→ zt . �

We will call the function ϕ(· , t) : V̌ −→ R the phase of Vt ; observe that it is defined, not
on V̌t , but on V̌ itself, viewed as a ‘master universal covering manifold’.

The following particular case relates the Hamiltonian phase to proposition 4 on changes
of symplectic frames.

Corollary 7. Let H be a Hamiltonian which is quadratic and homogeneous in the position
and momentum variables; its flow thus consists of symplectic matrices SH

t . The Hamiltonian
phase of SH

t (V) is

ϕ(ž, t) = ϕ(ž) + 1
2 (ptxt − px). (25)

Proof. Since H is quadratic we have, using successively Euler’s formula and Hamilton’s
equations,

H(zt , t) = 1
2 (xt∇xH(zt , t) + pt∇pH(zt , t))

= 1
2 (−xt ṗt + pt ẋt )
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and hence ∫ zt

z0

αH = 1

2

∫ t

0
(psẋs + xsṗs) ds

= 1

2
(ptxt − px)

whence (25) in view of (21). �

Another interesting particular case of proposition 6 occurs when the Lagrangian manifold
V is invariant under the flow: f H

t (V) = V. (This situation typically occurs when one has a
completely integrable system and V is an associated Lagrangian torus.)

Corollary 8. Let H be a time-independent Hamiltonian, (f H
t ) its flow, and assume that V is

invariant under
(
f H

t

)
(that is f H

t (V) = V for all t). If ž is the homotopy class in V of a path
γ (z̄0, z) and γ (z, zt ) is the piece of Hamiltonian trajectory joining z to zt then

ϕ(ž, t) = ϕ(žt ) − Et (26)

where E is the (constant) value of H on V and žt is the homotopy class of the path
γ (z̄0, z) + γ (z, zt ) in V.

Proof. The trajectory s 
−→ zs = f H
s (z) is a path γ (z, zt ) in V joining z to zt , hence∫

γ (z̄0,z)

p dx +
∫ zt

z

αH =
∫

γ (z̄0,zt )

p dx − Et

where γ (z̄0, zt ) = γ (z̄0, z) + γ (z, zt ). The result follows since the first integral on the
right-hand side of this equality is by definition ϕ(žt ). �

Proposition 6 also allows us to link the notion of phase of a Lagrangian manifold to the
standard Hamilton–Jacobi theory.

Proposition 9. Let z ∈ V have a neighbourhood U in V projecting diffeomorphically on R
n
x .

(i) There exists ε > 0 such that the local expression � = �(x, t) of the phase ϕ is defined for
|t | < ε and (ii) � satisfies the Hamilton–Jacobi equation

∂�

∂t
+ H(x,∇x�) = 0

for |t | < ε.

Proof. Part (i) is an immediate consequence of proposition 3 (the existence of ε follows from
the fact that the caustic is a closed subset of V). To prove (ii) we observe that

�(x, t) = �(x ′, 0) +
∫ z,t

z′,0
p dx − H dt

in view of formula (21) in proposition 6; now we can parametrize the arc joining z′, 0 to z, t

by x and t, hence

�(x, t) = �(x ′, 0) +
∫ x,t

x ′,0
p dx − H dt

which is precisely the solution of Hamilton–Jacobi’s equation with initial datum � at time
t = 0 (cf formula (3)). �
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7. Phase and Heisenberg–Weyl operators

Let T (za) be the phase-space translation z 
−→ z + za . This operator can be viewed as the
time-one map of the flow determined by the ‘translation Hamiltonian’ Ha = σ(z, za): this
flow consists of the mappings f a

t (z) = z + tza , and thus T (za) = f a
1 . In proposition 10 this is

taken into account, that is, the phases of the translated Lagrangian manifolds will be calculated
using formula (21) of proposition 6.

Proposition 10. Let T (za) be the translation with vector za = (xa, pa) and T (zb) be the one
with vector zb = (xb, pb). (i) The phase ϕa of T (za)V is given by

ϕa(ž) = ϕ(ž) + 1
2paxa + pax0 if π(ž) = (x, p). (27)

(ii) Let ϕa,b be the phase of T (za)(T (zb)V) and ϕa+b that of T (za + zb)V; we have

ϕa,b(ž) − ϕa+b(ž) = − 1
2σ(za, zb) (28)

and hence

ϕa,b(ž) − ϕb,a(ž) = σ(za, zb). (29)

Proof. We have, in view of (24),

ϕa(ž) = ϕ(ž0) +
∫ 1

0
(p0 + tpa)xa dt −

∫ 1

0
σ(z0 + tza, za) dt

= ϕ(ž0) + p0xa +
1

2
paxa − (p0xa − pax0)

= ϕ(ž0) +
1

2
paxa + pax0

whence (27). Formulae (28) follows from (27), since we have

ϕa,b(ž) = (
1
2pbxb + pbx0

)
+

(
1
2paxa + pa(xb + x0)

)
and

ϕa+b(ž) = 1
2 (pa + pb)(xa + xb) + (pa + pb)x0.

Formula (29) follows from formula (28). �

Remark 11. The phases of T (za)(T (zb)V) and T (za + zb)V are different, even though these
manifolds are the same! In fact, formula (28) shows that the difference between the phases of
T (za + zb)V and T (za)(T (zb)V) is just (up to the sign) the area of the phase-space triangle
spanned by the vectors za, zb (see the discussion and figure 3, p 211 in Littlejohn [16]).

We also have the following ‘symplectic covariance’ result:

Proposition 12. The Hamiltonian phases of the identical Lagrangian manifolds SH
t (T (za)V)

and T (SH
t (za))S

H
t V are equal.

Proof. The phase of T (za)V is

ϕa(ž) = ϕ(ž0) + 1
2paxa + pax0

hence that of SH
t (T (za)V) is (using (25) and the linearity of SH

t )

A(t) = ϕ(ž0) + 1
2paxa + pax0 + 1

2 (p0,t + pa,t )(x0,t + xa,t ) − 1
2 (p0 + pa)(x0 + xa))

where z0,t = SH
t z0, za,t = SH

t za . Similarly, the Hamiltonian phase of SH
t V is

ϕ(ž, t) = ϕ(ž0) + 1
2 (p0,t x0,t − p0x0)
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hence that of T
(
SH

t (za)
)
SH

t V is

B(t) = ϕ(ž0) + 1
2 (p0,t x0,t − p0x0) + 1

2pa,txa,t + pa,tx0,t

and thus

A(t) − B(t) = 1
2 (pax0 − p0xa) − 1

2 (pa,tx0,t − p0,t xa,t )

= 1
2 (σ (za, z0) − σ(za,t , z0,t ))

= 1
2

(
σ(za, z0) − σ

(
SH

t za, S
H
t z0

))
.

Since SH
t ∈ Sp(n), we have σ

(
SH

t za, S
H
t z0

) = σ(za, z0) and hence A(t) = B(t), which
proves the proposition. �

Let us extend the results above to the case of a Hamiltonian flow ‘displacing’ points in
the direction of the field of tangents to a smooth curve in phase-space. With such a curve
t 
−→ γ (t) = (xγ (t), pγ (t)), we associate the time-dependent Hamiltonian Hγ defined by

Hγ (z, t) = σ(z, γ̇ (t)) = pẋγ (t) − xṗγ (t).

The solutions of the associated Hamilton equations ẋ(t) = ẋγ (t), ṗ(t) = ṗγ (t) are given by

zt = z(0) + γ (t) − γ (0)

hence the flow
(
f

γ

t,t ′
)

propagates points along curves which are translations of γ . We will
therefore call Hγ the displacement Hamiltonian along γ . Set f

γ
t = f

γ

t,0 and let V be a
Lagrangian manifold with phase ϕ.

Proposition 13. The phase of the displaced Lagrangian manifold V
γ (t) = f

γ

t,0(V) is

ϕγ (ž, t) = ϕ(ž) +
1

2
(ptxt − p0x0) − 1

2

∫
γ

p dx − x dp. (30)

If, in particular, γ is a loop then

ϕγ (ž, t) = ϕ(ž) − 1

2

∫
γ

p dx − x dp. (31)

Proof. In view of formula (21), the phase of V
γ (t) is

ϕ(ž, t) = ϕ(ž) +
∫ t

0
(p(s)ẋ(s) − σ(z(s), γ̇ (s))) ds.

We have σ(z(s), γ̇ (s)) = σ(z(s), ż(s)) and hence

p(s)ẋ(s) − σ(z(s), γ̇ (s)) = ṗ(s)x(s).

Noting that

ṗ(s)x(s) = 1

2
(p(s)ẋ(s) + ṗ(s)x(s) − (p(s)ẋ(s) − ṗ(s)x(s)))

= 1

2

d

dt
(p(s)x(s)) − 1

2
σ(z(s), ż(s))

and integrating we get formula (30). �

The result above can actually be recovered from proposition (10) by using infinitesimal
translations: segmenting the trajectory t 
−→ z(t) into straight sections [z, z1], [z1, z2], . . .
where zk = z(k �t) (�t = t/N), one finds that the limit of the product of these operators is
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precisely

lim
N→∞

T (zN − zN−1) · · · T (z2 − z1)T (z1 − z) = T γ (t).

(This observation thus a posteriori justifies formula (3.27), p 212, in Littlejohn [16].)
Both formulae (28) and (29) in proposition 10 are strongly reminiscent of the commutation

formulae in the quantum-mechanical Heisenberg–Weyl group; however, there is nothing
quantum mechanical involved in our constructions! Let us discuss this point in some detail.
Recall (see for instance Littlejohn [16]) that the basic idea of the Heisenberg–Weyl operators
is that they move wavefunctions around in phase-space. This is done as follows: for a given
quantum state |�〉, the position and momentum expectation values are 〈x〉 and 〈p〉; this can be
written collectively as 〈z〉 = 〈�| z |�〉. Heisenberg–Weyl operators T̂ (za) are parametrized
by points za in phase-space, and have the property that if |�〉 has the expectation value 〈z〉
then T̂ (za) |�〉 should have the expectation value 〈z〉 + za; this requires that

T̂ (za)
∗ẑT̂ (za) = ẑ + za

where ẑ = (x,−ih̄∇x) is the quantum operator associated with z. One shows (see for instance
Littlejohn [16]) that T̂ (za) must be the operator

T̂ (za) = exp
[ i

h̄
σ (za, ẑ)

]
whose action on wavefunctions in the x representation is given by the formula

T̂ (za)�(x) = exp

[
i

h̄

(
pax − 1

2
paxa

)]
�(x − xa).

Let us interpret propositions 10 and 12 in terms of the wavefunctions

�(ž) = exp
[ i

h̄
ϕ(ž)

]√
ρ(ž)

on V̌ introduced in our previous work [8, 9]; here ρ is a de Rham form on V̌. Such a
wavefunction is defined on V, i.e.

�(γ ž) = �(ž) for all γ ∈ π1(V)

if and only if V satisfies the EBK condition
1

2πh̄

∮
γ

p dx − 1

4
m(γ ) is an integer.

(γ is an arbitrary loop on V, and m(γ ) is its Maslov index). We define the action of the
Hamiltonian flow

(
f H

t

)
on � by

f H
t �(ž) = exp

[ i

h̄
ϕ(ž, t)

]√
ρ(ž, t)

where ϕ(ž, t) is the Hamiltonian phase and
√

ρ(ž, t) = √
ρ
(
f H

t (ž), t
)
. If we now choose for H

the translation Hamiltonian Ha(z) = σ(z, za), then in view of (27) the action of T (za) = f Ha

1
on � is

T (za)�(ž) = exp

[
i

h̄
(ϕ(ž) +

1

2
paxa)

] √
ρ(T (za)ž). (32)

This formula suggests that it would perhaps also be interesting to examine the relationship
between the phase and the Wigner transform. For instance, if � = eiφ/h̄|�| is a wavefunction,
we can associate with it a Lagrangian manifold V by the formula p = ∇x� and then define a
phase-space function

�̃(z) = exp
( i

h̄
ϕ(z)

)
W�(z)

where W� is the Wigner transform. What are the properties of �̃, and how does it behave
under a Hamiltonian evolution?
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8. Concluding remarks

What have we learnt from all this? I think that one of the main points that have been
demonstrated is the advantage of the symplectic/Lagrangian approach when dealing with
the notion of phase. The overwhelming advantage of this approach is that it avoids all the
difficulties (such as the appearance of caustics or other unphysical singularities) one is doomed
to encounter when working in configuration space or any other preferred representation.
Moreover, if one uses in addition the properties of the Poincaré–Cartan differential form, the
Hamilton–Jacobi theory emerges quite naturally when calculating the local expression of the
phase. This is by the way helpful to get a geometric understanding of why the Hamilton–Jacobi
theory breaks down for large times (but these geometric reasons have of course been known
independently for a long time, see [2, 3]). Admittedly, our definition of the phase has been
done at the cost of some mathematical sophistication, but at the same time it has allowed us
to give a precise working definition of an object whose behaviour under Hamiltonian flows
leads automatically to the Heisenberg–Weyl operator calculus without invoking any pseudo-
differential quantization scheme (Weyl calculus, Feynman ordering, etc). It would certainly
be interesting to pursue this approach in a systematic way, as pointed out in the last paragraph
of the previous section. (The quantum evolution of the phase has been studied very much
along these lines from the point of view of ‘Bohmian mechanics’ in de Gosson [7]; since
the involved Lagrangian manifolds were all simply connected graphs there was no need to a
general theory as sketched here).

What we have not done in this work, due to lack of time and space, is to apply our methods
to the study of geometric and topological phase shifts à la Berry or Hannay associated with
adiabatic (or non-adiabatic) evolution (see [4, 11]). Since these phenomena are typically
associated with phase-space motions, it would not be surprising that they could be interpreted
in terms of the notions we have introduced here. More generally, by the way, the phase could
be used to give a precise characterization of adiabatic evolution for multi-dimensional systems
by adapting the topological ideas in [22]. We hope to come back to these fundamental topics
in a forthcoming work.

References

[1] Koiller J 1989 Classical adiabatic angles for slowly moving mechanical systems Contemp. Math. 97 159–85
[2] Abraham R and Marsden J E 1978 Foundations of Mechanics 2nd edn (New York: Benjamin-Cummings)
[3] Arnold V I 1978 Mathematical Methods of Classical Mechanics 2nd edn (Graduate Texts in Mathematics)

(Berlin: Springer)
[4] Berry M V 1984 Quantal phase factors accompanying adiabatic changes Proc. R. Soc. A 392 45–57
[5] de Gosson M 1994 On the Leray–Maslov quantization of Lagrangian submanifolds J. Geom. Phys. 13 158–68
[6] de Gosson M 1997 Maslov Classes, Metaplectic Representation and Lagrangian Quantization (Research Notes

in Mathematics 95) (Berlin: Wiley–VCH)
[7] de Gosson M 1998 The quantum motion of half-densities and the derivation of Schrödinger’s equation J. Phys.

A: Math. Gen. 31 4239–47
[8] de Gosson M 2001 The Principles of Newtonian and Quantum Mechanics (London: Imperial College Press)
[9] de Gosson M 2002 The ‘symplectic camel principle’ and semiclassical mechanics J. Phys. A: Math. Gen. 35

6825–51
[10] Gromov M 1985 Pseudoholomorphic curves in symplectic manifolds Invent. Math. 82 307–47
[11] Hannay J H 1985 Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian J. Phys. A:

Math. Gen. 18 221–30
[12] Hofer H and Zehnder E 1994 Symplectic Invariants and Hamiltonian Dynamics (Birkhäuser Advanced texts)
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